GATE EE 2019

Question Paper with Solutions

GATE 2019 ELECTRICAL ENGINEERING PAPER WITH SOLUTIONS

SECTION A: GENERAL APTITUDE

Q1. Newspapers are a constant source of delight and recreation for me. The \qquad trouble is that I read \qquad many of them
A. even, too
B. even, quite
C. only, quite
D. only, too

Ans D
Sol -
Newspapers are a constant source of delight and recreation for me. The only (what bother's) trouble is that I read too (a lot/ large) many of them.
Q2. The missing number in the given sequence 343, 1331, \qquad 4913 is
A. 2744
B. 2197
C. 4096
D. 3375

Ans B
Sol -
$343=7^{3}$
$1331=11^{3}$
$4913=17^{3}$
All numbers given are cube of prime numbers so $13^{3}=2917$ satisfy the missing number.
Q3. The passengers were angry \qquad the airline staff about the delay.
A. towards
B. On
C. with
D. about

Ans C
Sol -
The passengers were angry with the airline staff about the delay.
Q4. It takes two hours for a person X to mow the lawn. Y can move the same lawn in four hours. How long (in minutes) will it take X and Y, if they work together to move the lawn?
A. 120
B. 80
C. 60
D. 90

Ans B

Sol -
Time taken by X to now the lawn $=2 \mathrm{hrs}$.
\therefore Work done by X in $1 \mathrm{hr}=\frac{1}{2}$
Similarly,
Work done by 4 in hr = $1 / 4$
Work done by $\mathrm{x}+4$ in $1 \mathrm{hr}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$
\therefore Total time taken by $\mathrm{X} \& 4$ together $=\frac{4}{3}$ hours
$=\frac{4}{3} \times 60 \mathrm{~min}$ utes
= 80 Minutes

Q5. I am not sure if the bus that has been booked will be able to \qquad all the students.
A. sit
B. deteriorate
C. accommodate
D. fill

Ans C
Sol-
I am not sure if the bus that has been booked will be able to accommodate (occupy) all the students.
Q6. Given two sets $X=\{1,2,3\}$ and $Y=\{2,3,4\}$, we construct a set Z of all possible fractions where the numerators belong to set X and the denominators belong to set Y. The product of element having minimum and maximum values in the set Z is \qquad _.
A. $3 / 8$
B. $1 / 12$
C. $1 / 8$
D. $1 / 6$

Ans A

Sol-
Given that $X=\{1,2,3\}$
$4=\{2,3,4\}$
$\mathrm{Z}=\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{2}, \frac{2}{3}, \frac{2}{4}, \frac{3}{2}, \frac{3}{4}, \frac{3}{3}\right\}$
Minimum value in $\mathrm{z}=\frac{1}{4}$
Maximum value in $z=\frac{3}{2}$
Product $=\frac{3}{8}$
Q7. The ratio of the number of boys and girls who participated in an examination is 4:3. The total percentage of candidates who passed the examination is 80 and the percentage of girls who passed is 90 . The percentage of boys who passed is \qquad
A. 80.50
B. 55.50
C. 72.50
D. 90.00

Ans C
Sol-
Let number of boys participated $=4 x$
Number of girls participated $=3 x$
Total number of students participated $=7 x$
Total passed candidates $=\frac{80}{100} \times 7 x=\frac{28}{5} x$
Girls candidate who passed $=\frac{90}{100} \times 3 x=\frac{27}{10} \mathrm{x}$
Boys candidate who passed $=$ Total passed candidate - Girls candidate who passed
$=\frac{28}{5} x-\frac{27}{10} x$
$=\frac{29}{10} \mathrm{x}$
$=\frac{29 x}{10 \times 4 x} \times 100=72.5 \%$

Q8. An award-winning study by a group of researchers suggests that men are as prone to buying on impulse as women feel more guilty about shopping.

Which one of the following statements can be inferred from the given text?
A. Some men and women indulge in buying on impulse
B. Few men and women indulge in buying on impulse
C. Many men and women indulge in buying on impulse
D. All men and women indulge in buying on impulse

Ans A
Sol -
The correct statement can be concluded from Venn diagram or using the Syllogism.
Q9. How many integers are there between 100 and 1000 all of whose digits are even?
A. 100
B. 60
C. 90
D. 80

Ans A
Sol-
For all digits of a number which lie between 100 and 1000 are even,
Unit and tens digits can be filled from the set $\{0,2,4,6,8\}$
But hundred's digit does not include 0 as it will not remain a number which lie between 100 and 1000
\therefore Hundreds digit set is $\{2,4,6,8\}$
Total integer be $=5 \times 5 \times 4$
Total choies $\left\{\begin{array}{ccc}\uparrow & \uparrow & \uparrow \\ \text { Units } & \text { Tens } & \text { Hundreds }\end{array}\right.$
for digit digit digit
Total integer $=100$ numbers
Q10. Consider five people - Mita, Ganga, Rekha, Lakshmi and Sana. Ganga is taller than both Rekha and Lakshmi. Lakshmi is taller than Sana. Mita is taller than Ganga.

Which of the following conclusions are true?

1. Lakshmi is taller than Rekha
2. Rekha is shorter than Mita
3. Rekha is taller than Sana
4. Sana is shorter than Ganga
A. 1 and 3
B. 1 only
C. 2 and 4
D. 3 only

Ans C
Sol -
Given that
Ganga > Rekha, Lakshmi
Lakshmi > Sana
Mita > Ganga
\therefore Mita > Ganga > Rekha, Lakshmi > Sana
$\therefore 2$ and statement 4 are correct

SECTION B: ELECTRICAL ENGINEERING

Q1. The mean-square of a zero-mean random process is $\frac{\mathrm{kT}}{\mathrm{C}}$, where k is Boltzmann's constant, T is the absolute temperature, and C is capacitance. The standard deviation of the random process is
A. $\frac{\sqrt{\mathrm{kT}}}{\mathrm{C}}$
B. $\frac{\mathrm{kT}}{\mathrm{C}}$
C. $\sqrt{\frac{\mathrm{kT}}{\mathrm{C}}}$
D. $\frac{\mathrm{c}}{\mathrm{kT}}$

Ans C

Sol-
Given that
Mean square of random process $=\mathrm{E}\left(\mathrm{x}^{2}\right)=\frac{\mathrm{kt}}{\mathrm{C}}$
Mean is given zero $\Rightarrow E(x)=0$
We know that $E\left(x^{2}\right)-[E(x)]^{2}=$ variance
Variance $=\frac{\mathrm{KT}}{\mathrm{C}}$
Standard deviation $=\sqrt{\mathrm{var}}=\sqrt{\frac{\mathrm{KT}}{\mathrm{C}}}$
Q2. The characteristic equation of a linear time-invariant (LTI) system is given by $\Delta(s)=s^{4}+3 s^{3}+3 s^{2}+s+k=0$.
The system is BIBO stable if
A. $0<\mathrm{k}<\frac{12}{9}$
B. $0<\mathrm{k}<\frac{8}{9}$
C. $k>6$
D. $\mathrm{k}>3$

Ans B
Sol-
Applying R.H criteria for stability
$\Delta(S)=S^{4}+3 S^{3}+3 S^{2}+S+K=0$

S^{4}	1	3	K
$\mathrm{~S}^{3}$	3	1	0
	$\frac{8}{3}$	K	0
$\mathrm{~S}^{2}$	$\frac{8}{3}-3 \mathrm{~K}$		
$\mathrm{~S}^{1}$	$\frac{1}{8 / 3}$	0	0
	K		
$\mathrm{~S}^{0}$			

For stability, first column should be greater than zero
$\frac{\frac{8}{3}-3 \mathrm{~K}}{8 / 3}>0$ and $k>0$
$\therefore 0<\mathrm{K}<\frac{8}{9}$

Q3. The inverse Laplace transform of $\mathrm{H}(\mathrm{s})=\frac{\mathrm{s}+3}{\mathrm{~s}^{2}+2 \mathrm{~s}+1}$ for $\mathrm{t} \geq 0$ is
A. $2 t e^{-t}+e^{-t}$
B. $3 t \mathrm{e}^{-\mathrm{t}}+\mathrm{e}^{-\mathrm{t}}$
C. $3 \mathrm{e}^{-\mathrm{t}}$
D. $4 \mathrm{te}^{-\mathrm{t}}+\mathrm{e}^{-\mathrm{t}}$

Ans A
Sol-
$H(S)=\frac{S+3}{S^{2}+2 S+1}$
$H(t)=L^{-1}[H(S)]$
$=L^{-1}\left[\frac{\mathrm{~S}+3}{\mathrm{~S}^{2}+2 \mathrm{~S}+1}\right]=\mathrm{L}^{-1}\left[\frac{\mathrm{~S}+3}{(\mathrm{~S}+1)^{2}}\right]$
$=\mathrm{L}^{-1}\left[\frac{\mathrm{~S}+1+2}{(\mathrm{~S}+1)^{2}}\right]=\mathrm{L}^{-1}\left[\frac{1}{\mathrm{~S}+1}\right]+\mathrm{L}^{-1}\left[\frac{2}{(\mathrm{~S}+1)^{2}}\right]$
$H(t)=e^{-t}+2 t e^{-t}$
Q4. A $5 \mathrm{kVA}, 50 \mathrm{~V} / 100 \mathrm{~V}$, single-phase transformer has a secondary terminal voltage of 95 V when loaded. The regulation of the transformer is
A. 9%
B. 4.5%
C. 1%
D. 5%

Ans D
Sol-
We know that
Voltage Regulation $=\frac{\mathrm{V}_{\mathrm{NL}}-\mathrm{V}_{\mathrm{FL}}}{\mathrm{V}_{\mathrm{NL}}} \times 100$
Given that $V_{F L}=95 \mathrm{~V}$
$\mathrm{V}_{\mathrm{NL}}=100 \mathrm{~V}$
$\% \mathrm{VR}=\frac{100-95}{100} \times 100=5 \%$
Q5. A three-phase synchronous motor draws 200 A from the line at unity power factor at rated load. Considering the same line voltage and load, the line current at power factor of 0.5 leading is
A. 400 A
B. 300 A
C. 200 A
D. 100 A

Ans A
Sol -
We know that $\mathrm{P}=\mathrm{VI} \cos \varphi$, as load and voltage are same
$\therefore \mathrm{I} \cos \varphi=$ constant
$\mathrm{I}_{1} \cos \varphi_{1}=\mathrm{I}_{2} \cos \varphi_{2}$
$\mathrm{I}_{1}=200 \mathrm{~A}$
$\operatorname{Cos} \varphi_{1}=1$
$\operatorname{Cos} \varphi_{2}=0.5$
$\mathrm{I}_{2}=\frac{\mathrm{I}_{1} \cos \phi_{1}}{\cos \phi_{2}}=400 \mathrm{~A}$

Q6. A cv-axial cylindrical capacitor shown in Figure (i) has dielectric with relative permittivity $\varepsilon r 1=2$. When one-fourth portion of the dielectric is replaced with another dielectric of relative permittivity εr_{2}, as shown to Figure (ii), the capacitance is doubled. The value of εr_{2} is
\qquad .

Figure (i)

Figure (ii)

Ans 10
Sol-
We know that
$\mathrm{C}_{1}=\frac{2 \pi \epsilon_{\mathrm{r}}}{\ln \left(\frac{\mathrm{b}}{\mathrm{a}}\right)}=\frac{2 \pi\left(2 \epsilon_{\mathrm{o}}\right)}{\ln \left(\frac{\mathrm{R}}{\mathrm{r}}\right)}$
$\mathrm{C}_{1}=\frac{4 \pi \epsilon_{\mathrm{o}}}{\ln \left(\frac{\mathrm{R}}{\mathrm{r}}\right)}$

Total portion cover 2π
$\therefore \frac{1}{4}$ portion covers $=\frac{2 \pi}{4}=\frac{\pi}{2}$
$\frac{\pi}{2}$ length for $\in_{\mathrm{r}_{1}}$
and $\frac{3 \pi}{2}$ length for $\epsilon_{\mathrm{r}_{1}}$
Both are connected in parallel

$\mathrm{C}_{2}=\mathrm{C}_{\mathrm{r} 1}+\mathrm{C}_{\mathrm{r} 2}$
$=\frac{2 \pi\left(2 \epsilon_{\mathrm{o}}\right)}{\ln \left(\frac{\mathrm{R}}{\mathrm{r}}\right)} \times \frac{3 \pi}{2}+\frac{2 \pi\left(\epsilon_{\left.\mathrm{r}_{2} \in_{\mathrm{o}}\right)}\right.}{\ln \left(\frac{\mathrm{R}}{\mathrm{r}}\right)} \times \frac{\pi}{2}$
$=\frac{\pi \epsilon_{\mathrm{o}}}{\ln \left(\frac{\mathrm{R}}{\mathrm{r}}\right)}\left[3+\frac{\epsilon_{\mathrm{r}_{2}}}{2}\right]$
Given $\mathrm{C}_{2}=2 \mathrm{C}_{1}$
$\frac{\pi \epsilon_{\mathrm{o}}}{\ln \left(\frac{\mathrm{R}}{\mathrm{r}}\right)}\left[3+\frac{\epsilon_{\mathrm{r}_{2}}}{2}\right]=2\left(\frac{4 \pi \mathrm{E}_{\mathrm{o}}}{\ln \left(\frac{\mathrm{R}}{\mathrm{r}}\right)}\right)$
$\in_{\mathrm{r}_{2}}=10$
Q7. The parameter of an equivalent circuit of a three-phase induction motor affected by reducing the rms value of the supply voltage at the rated frequency is
A. rotor leakage reactance
B. stator resistance
C. rotor resistance
D. magnetizing reactance

Ans D
Sol -

$\frac{\mathrm{V}_{1}}{\mathrm{f}} \alpha \phi \alpha \mathrm{I}_{\mathrm{m}} \quad \mathrm{I}_{\mathrm{m}} \alpha \frac{\mathrm{V}}{\mathrm{Xm}}$
$\frac{\mathrm{V} \downarrow}{\mathrm{f}(=\text { constt. })} \alpha \phi_{\mathrm{m}} \downarrow$
By reducing the rms value of supply voltage at rated frequency, magnetizing current changes which changes the magnetizing reactance
Q8. The output response of a system is denoted as $y(t)$, and its Laplace transform is given by

$$
\mathrm{Y}(\mathrm{~s})=\frac{10}{\mathrm{~s}\left(\mathrm{~s}^{2}+\mathrm{s}+100 \sqrt{2}\right)}
$$

The steady state value of $y(t)$ is
A. $10 \sqrt{2}$
B. $100 \sqrt{2}$
C. $\frac{1}{10 \sqrt{2}}$
D. $\frac{1}{100 \sqrt{2}}$

Ans C
Sol-
$H(s)=\frac{10}{s\left(s^{2}+s+100 \sqrt{2}\right)}$
For finding steady state value, we will apply final value theorem
$\lim _{\mathrm{t} \rightarrow \infty} \mathrm{y}(\mathrm{t})=\lim _{\mathrm{s} \rightarrow 0} \mathrm{sY}(\mathrm{s})$
$y(\infty)=\lim _{s \rightarrow 0} s \times \frac{10}{s\left(s^{2}+s+100 \sqrt{2}\right)}$
$y(\infty)=\frac{1}{10 \sqrt{2}}$
Q9. The open loop transfer function of a unity feedback system is given by

$$
\mathrm{G}(\mathrm{~s})=\frac{\pi \mathrm{e}^{-0.25 \mathrm{~s}}}{\mathrm{~s}}
$$

In $\mathrm{G}(\mathrm{s})$ plane, the Nyquist plot of $\mathrm{G}(\mathrm{s})$ passes through the negative real axis at the point
A. $(-0.5, \mathrm{j} 0)$
B. $(-1.5, \mathrm{j} 0)$
C. $(-1.25, \mathrm{j} 0)$
D. $(-0.75, j 0)$

Ans A
Sol-
$\mathrm{G}(\mathrm{s})=\frac{\pi \mathrm{e}^{-0.25 \mathrm{~s}}}{\mathrm{~s}}$
Nyquist plot cut the negative real
Axis at $w=$ phase cross over frequency

$$
\begin{aligned}
& \mathrm{G}(\mathrm{j} \omega)=\frac{\pi \mathrm{e}^{-0.25} \omega}{\mathrm{j} \omega} \\
& \phi=-90^{\circ}-0.25 \omega \times \frac{180^{\circ}}{\pi} \\
& \left.\angle \mathrm{G}(\mathrm{j} \omega)\right|_{\omega=\omega_{\mathrm{pc}}}=-180^{\circ} \\
& \phi_{\omega=\omega_{\mathrm{pc}}}=-90^{\circ}-0.25 \omega_{\mathrm{pc}} \times \frac{180^{\circ}}{\pi}=-180^{\circ} \\
& 90^{\circ}=\omega_{\mathrm{pc}}\left(\frac{45^{\circ}}{\pi}\right) \\
& \omega_{\mathrm{pc}}=2 \pi
\end{aligned}
$$

Magnitude at cutting point
$\mathrm{X}=|\mathrm{G}(\mathrm{j} \omega)|_{\omega_{\mathrm{pc}}}$
$=\frac{\pi}{\omega_{\mathrm{pc}}}=\frac{\pi}{2 \pi}$
$\mathrm{x}=\frac{1}{2}$
Then, the co-ordinates becomes ($-0.5, \mathrm{j} 0$).

Q10. A current controlled current source (CCCS) has an input impedance of 10Ω and output impedance of $100 \mathrm{~K} \Omega$. When this CCCS is used in a negative feedback closed loop with a loop gain of 9 , the closed loop output impedance is
A. $100 \mathrm{~K} \Omega$
B. $1000 \mathrm{~K} \Omega$
C. 100Ω
D. 10Ω

Ans B
Sol-
Given $Z_{\text {in }}=10 \Omega, Z_{\mathrm{o} / \mathrm{p}}=100 \Omega$
For CCCS

Series connection is output
$Z_{o / p}=Z_{o / p}(1+A \beta)=100(1+9)$
$=100 \mathrm{~K} \Omega$
Q11. A six-pulse thyristor bridge rectifier is connected to a balanced three-phase, 50 Hz AC source. Assuming that the DC output current of the rectifier is constant, the lowest harmonic component in the AC input current is
A. 100 Hz
B. 150 Hz
C. 300 Hz
D. 250 Hz

Ans D
Sol-
We know that,
For 6-pulse converter harmonic present in AC current are $6 \mathrm{~K} \pm 1$
General expression NK ± 1
$[k=0,1,2,3]$
For 6 pulse $\mathrm{n}=6$
Lowest order harmonic $=5$
Lower harmonic frequency $=5 \times 50=250 \mathrm{~Hz}$
Q12. The current I flowing in the circuit shown below in amperes (round off to one decimal place) is \qquad —.

Ans 1.4
Sol-

Applying nodal analysis at point 1 whose voltage is assumed as V_{1}.
$\frac{\mathrm{V}_{1}-20}{2}-2+\frac{\mathrm{V}_{1}-5 \mathrm{I}}{3}=0$.
$\mathrm{I}=\frac{20-\mathrm{V}_{1}}{2}$.
Solving (1) and (2)
$-\mathrm{I}-2+\frac{\mathrm{V}_{1}-5 \mathrm{I}}{3}=0$
$8 \mathrm{I}=\mathrm{V}_{1}-6$
$8 \mathrm{I}=20-2 \mathrm{I}-6$
$10 \mathrm{I}=14$
$\mathrm{I}=1.4 \mathrm{~A}$
Q13. The partial differential equation
$\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}-\mathrm{c}^{2}\left(\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}\right)=0$; Where $\mathrm{c} \neq 0$ is known as
A. Poisson's equation
B. wave equation
C. Laplace equation
D. heat equation

Ans B
Sol-
Wave equation $\frac{d^{2} u}{d t^{2}}=c^{2}\left(\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}\right)$
Laplace equation $\nabla^{2} U=\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}=0$
Poission equation $\nabla^{2} U=f$
Heat equation $\frac{d u}{d t}-\alpha\left(\frac{d^{2} u}{d y^{2}}+\frac{d^{2} u}{d y^{2}}+\frac{d^{2} u}{d z^{2}}\right)=0$
Q14. Which one of the following function is analytic in the region $|\mathrm{z}| \leq 1$?
A. $\frac{z^{2}-1}{z+2}$
B. $\frac{\mathrm{z}^{2}-1}{\mathrm{z}}$
C. $\frac{\mathrm{z}^{2}-1}{\mathrm{z}-0.5}$
D. $\frac{z^{2}-1}{z-j 0.5}$

Ans A
Sol-
For $\frac{z^{2}-1}{z+2}$, the singularity $z=-2$ lies outside the $|z| \leq 1$
\therefore By Cauchy's integral theorem
$\int \frac{z^{2}-1}{z+2} d z=0$ for $|z| \leq 1$

Q15. If $f=2 x^{3}+3 y^{2}+4 z$, the value of line integral \int_{C} grade f.dr evaluated over contour C formed by the segments $(-3,-3,2) \rightarrow(2,-3,2) \rightarrow(2,6,2) \rightarrow(1,6,-1)$ is \qquad .
Ans 139
Sol-
Given that
$y=2 x^{3}+3 y^{2}+4 z$
$\int_{C} \operatorname{grad} \mathrm{f} . \mathrm{dr}=$?
$\overrightarrow{\mathrm{dr}}=d x \hat{i}+d y \hat{j}+d z \hat{k}$
$\operatorname{grad} f=\frac{d f}{d x} \hat{i}+\frac{d f}{d y} \hat{j}+\frac{d f}{d z} \hat{k}$
$=6 x^{2} \hat{i}+6 y \hat{j}+4 \hat{k}$
$\int \operatorname{grad} \mathrm{f} \cdot \overrightarrow{\mathrm{dr}}=\int 6 x^{2} d x+\int 6 y d y+\int 4 z d z$
Applying the limits
$\int_{C} \operatorname{grad} \mathrm{f} . \mathrm{dr}=\left[\int_{-3}^{2} 6 \mathrm{x}^{2} \mathrm{dx}+\int_{-3}^{-3} 6 \mathrm{ydy}+\int_{2}^{2} 4 \mathrm{dz}\right]$
$=\left[\int_{2}^{2} 6 x^{2} d x+\int_{-3}^{6} 6 y d y+\int_{2}^{2} 4 d z\right]+\left[\int_{2}^{2} 6 x^{2}+\int_{6}^{6} 6 y d y+\int_{2}^{-1} 4 d z\right]$
$=\left[2 x^{3}\right]_{-3}^{2}+\left[3 y^{2}\right]_{-3}^{2}+[4 z]_{2}^{-1}$
$=70+81-12=139$
Q16. Five alternators each rated 5 MVA, 13.2 kV with 25% of reactance on its own base are connected in parallel to a busbar. The short-circuit level in MVA at the busbar is \qquad . Ans 100
Sol-

Net reactance of generator
$X=\frac{0.25}{5}=0.05$ p.u.
$I_{S C}=\frac{\text { Pre }- \text { fault voltage }}{X}=\frac{1}{0.05}=20$ p.u.
Short Circuit MVA $=$ Isc \times Base MVA
$=20 \times 5=100 \mathrm{MVA}$

Q17. Given V_{gs} is the gate-source voltage, V_{ds} is the drain voltage, and $\mathrm{V}_{\text {th }}$ is threshold voltage of an enhancement type NMOS transistor, the conditions for transistor to be biased in saturation are
A. $\mathrm{V}_{\mathrm{gs}}>\mathrm{V}_{\mathrm{th}} ; \mathrm{V}_{\mathrm{ds}} \leq \mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{th}}$
B. $\mathrm{V}_{\mathrm{gs}}<\mathrm{V}_{\mathrm{th}} ; \mathrm{V}_{\mathrm{ds}} \geq \mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{th}}$
C. $\mathrm{V}_{\mathrm{gs}}>\mathrm{V}_{\mathrm{th}} ; \mathrm{V}_{\mathrm{ds}} \geq \mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{th}}$
D. $\mathrm{V}_{\mathrm{gs}}<\mathrm{V}_{\mathrm{th}} ; \mathrm{V}_{\mathrm{ds}} \leq \mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{th}}$

Ans C
Sol-
For NMOS transistor to be in saturation the condition will be
Vgs $>V_{\text {th }}$
And $\mathrm{V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{Th}}$
Q18. The total impedance of the secondary winding, leads, and burden of a 5 ACT is 0.01Ω. If the fault current is 20 times the rated primary current of the CT, the VA output of the CT is

Ans 100
Sol-
$\mathrm{I}_{\text {sec }}=5 \times 20=100 \mathrm{~A}$
$V=I_{\text {sec }} R=100 \times 0.01=1 \mathrm{~V}$
VA output of $\mathrm{CT}=\mathrm{VI}_{\text {sec }}=100 \times 1100 \mathrm{VA}$
Q19. The Ybus matrix of a two-bus power system having two identical parallel lines connected between them in pu is given as

$$
Y_{\text {bus }}=\left[\begin{array}{cc}
-\mathrm{j} 8 & \mathrm{j} 20 \\
\mathrm{j} 20 & -\mathrm{j} 8
\end{array}\right] .
$$

The magnitude of the series reactance of each line in p.u. (round off up to one decimal place) is \qquad _.
Ans 0.1
Sol-
$Y_{12}=-\left(y_{12}\right)=-j 20$
Series admittance of each line $=\frac{Y_{12}}{2}=\frac{-\mathrm{j} 20}{2}=-\mathrm{j} 10$
Series reactance of each line $=\frac{1}{-\mathrm{j} 10}=\mathrm{j} 0.1$ p.u.
Q20. The rank of the matrix, $\mathrm{M}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$, is
Ans 3
Sol-
$\mathrm{M}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
Determinant of $\mathrm{M}=|\mathrm{M}|$
$|M|=0[0-1]-1[0-1]+1[1-0]$
$|M|=2$
$|M| \neq 0$
\therefore Rank of $\mathrm{M}=$ number of columns
$P(M)=3$

Q21. The symbols, a and T, represent positive quantities, and $u(t)$ is the unit step function. Which one of the following impulse responses is NOT the output of a causal linear timeinvariant system?
A. $e^{-a(t-T)} u(t)$
B. $e^{+a t} u(t)$
C. $1+\mathrm{e}^{-\mathrm{at}} \mathrm{u}(\mathrm{t})$
D. $e^{-a(t+T)} u(t)$

Ans C
Sol-
$H(t)=1+e^{-a t} u(t)$
' 1 ' is a constant and two sided so the impulse response cannot be causal as for causal it should satisfy
$h(t)=0$

$$
\begin{aligned}
& t<0 \\
& t>0
\end{aligned}
$$

Which it is not satisfying due to presence of constant
\therefore It is not causal
Q22. A system transfer function is $H(s)=\frac{a_{1} s^{2}+b_{1} s+c_{1}}{a_{2} s^{2}+b_{2} s+c_{2}}$. If $a_{1}=b_{1}=0$, and all other coefficients are positive, the transfer function represents a
A. high pass filter
B. band pass filter
C. notch filter
D. low pass filter

Ans D
Sol-
$H(s)=\frac{a_{1} s^{2}+b_{1} s+c_{1}}{a_{2} s^{2}+b_{2} s+C^{2}}$
$\mathrm{a}_{1}=\mathrm{b}_{1}=0$
$H(s)=\frac{C_{1}}{a_{2} S^{2}+b_{2} S+C_{2}}$
At $\mathrm{s}=0$
H (0) = constant
At $s=\infty$

\therefore It is a low par filter

Q23. The output voltage of a single-phase full bridge voltage source inverter is controlled by unipolar PWM with one pulse per half cycle. For the fundamental rms component of output voltage to be 75% of DC voltage, the required pulse width in degrees (round off up to one decimal place) is \qquad .
Ans 112.88
Sol-
Waveform for output voltage of single phase full bridge PWM inverter

$\mathrm{V}_{\mathrm{o}}=\sum_{\mathrm{n}=6 \mathrm{k} \pm 1} \frac{4 \mathrm{Vdc}}{\mathrm{n} \pi} \sin \mathrm{nd} \sin \frac{\mathrm{n} \pi}{2} \mathrm{n} \omega \mathrm{t}$
$V_{\text {oirms }}=$ fundamental $r_{m s}$ output voltage
$\mathrm{V}_{\mathrm{ol}}=\frac{2 \sqrt{2}}{\pi} \mathrm{Vdc} \sin \mathrm{d} \sin \frac{\pi}{2}$
Given, $\mathrm{V}_{01}=0.754 \mathrm{~V}_{\mathrm{dc}}$
$0.75 \mathrm{~V}_{\mathrm{dc}}=\frac{2 \sqrt{2}}{\pi} \mathrm{~V}_{\mathrm{dc}} \sin \mathrm{d}$
$\mathrm{d}=\sin ^{-1}\left[\frac{0.75}{0.9}\right]=56.44$
Pulse width $=2 \mathrm{~d}=112.88$
Q24. In the circuit shown below, the switch is closed at $t=0$. The value of θ in degrees which will give the maximum value of DC offset of the current at the time of switching is

A. 60
B. 90
C. -30
D. -45

Ans D
Sol-
For series R - L circuit, I (t) expression is
$\mathrm{i}(\mathrm{t})=\underbrace{\{\frac{-\mathrm{V}_{\mathrm{m}}}{\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}} \sin (\theta-\phi\} \underbrace{\mathrm{e}^{-\mathrm{t} / \tau}+\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}}}_{\begin{array}{l}\text { Particular } \\ \text { Integral }\end{array}} \sin (\omega \mathrm{t}-\phi)}_{\begin{array}{c}\text { Complimentary } \\ \text { Integral }\end{array}}$
$\mathrm{i}(\mathrm{t})=\mathrm{Ae}^{-\mathrm{t} / \tau}+\frac{\mathrm{V}_{\mathrm{M}}}{\mathrm{Z}} \sin (\omega \mathrm{t}-\phi)$
DC offset $=\mathrm{A}=\frac{-\mathrm{V}_{\mathrm{m}}}{\mathrm{Z}} \sin (\theta-\phi)$
For Maximum value of DC offset A
$\theta-\varphi=-90$
$\theta-\tan ^{-1}\left[\frac{\omega \mathrm{~L}}{\mathrm{R}}\right]=-90$
$\theta-\tan ^{-1}\left[\frac{377 \times 10 \times 10^{-3}}{3.77}\right]=-90$
$\theta-45^{\circ}=-90^{\circ}$
$\theta=-45^{\circ}$
Q25. M is a 2×2 matrix with eigenvalues 4 and 9 . The eigenvalues of M^{2} are
A. 2 and 3
B. -2 and 3
C. 16 and 81
D. 4 and 9

Ans C
Sol-
M is a 2×2 Matrix with Eigen value 4 and 9 If has $\lambda_{1}, \lambda_{2} \ldots_{-}{ }^{-} \lambda_{n}$ Eigen values

$M^{2} \rightarrow 4^{2}, 9^{2}$
$\therefore \mathrm{M}^{2}$ has Eigen values as 16 and 81
Q26. A three-phase $50 \mathrm{~Hz}, 400 \mathrm{kV}$ transmission line is 300 km long. The line inductance is 1 $\mathrm{mH} / \mathrm{km}$ per phase, and the capacitance is $0.01 \mu \mathrm{~F} / \mathrm{km}$ per phase. The line is under open circuit condition at the receiving end and energized with 400 kV at the sending end, the receiving end and energized with 400 kV at the sending end, the receiving end line voltage end line voltage in kV (round off to two decimal places) will be \qquad .
Ans 418.85
Sol-
$\mathrm{V}_{\mathrm{S}}=400 \mathrm{KV}$
$\mathrm{I}=300 \mathrm{~km}$
$\mathrm{L}_{1}=1 \mathrm{mH} / \mathrm{km} /$ phase
$\mathrm{C}_{1}=0.01 \mu \mathrm{~F} / \mathrm{km} /$ phase
$\mathrm{v}=\frac{1}{\sqrt{\mathrm{~L}_{1} \mathrm{C}_{1}}}=\frac{1}{\sqrt{1 \times 10^{-3} \times 0.01 \times 10^{-6}}}=3.16 \times 10^{5} \mathrm{~km} / \mathrm{s}$
$\beta^{\prime}=\frac{2 \pi \mathrm{fl}}{\mathrm{v}}=\frac{2 \pi \times 50 \times 300}{3.16 \times 10^{5}}=0.29$
$\mathrm{A}=1-\frac{\beta^{2}}{2}=1-\frac{(0.29)^{2}}{2}=0.955$
$\mathrm{V}_{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{A}}=\frac{400}{0.955}=418.85 \mathrm{KV}$

Q27. The current I flowing in the circuit shown below in amperes is \qquad .

Ans 0
Sol-
According to Mill man's Theorem, the equivalent circuit of the given circuit is

$\mathrm{E}_{\text {eq }}=\frac{\mathrm{E}_{1} / \mathrm{R}_{1}+\mathrm{E}_{2} / \mathrm{R}_{2}+\mathrm{E}_{3} / \mathrm{R}_{3}+\mathrm{E}_{4} / \mathrm{R}_{4}}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\frac{1}{\mathrm{R}_{4}}}$
$=\frac{\frac{200}{5}+\frac{160}{40}+\left[-\frac{100}{25}\right]+\left[-\frac{80}{20}\right]}{\frac{1}{50}+\frac{1}{40}+\frac{1}{25}+\frac{1}{20}}$
$\mathrm{E}_{\text {eq }}=0 \mathrm{~V}$
So, the current I flowing is 0 A
Q28. A 220 V (line), three-phase, Y -connected, synchronous motor has a synchronous impedance of $(0.25+j 2.5) \Omega /$ phase. The motor draws the rated current of 10 A at 0.8 pf leading. The rms value of line-to-line internal voltage in volts (round off to two decimal places)
is \qquad _.
Ans 245.36
Sol -
For synchronous motor
$\mathrm{E}_{\mathrm{g}}=\mathrm{V}_{1}-\mathrm{IZ}$
$\mathrm{V}_{\mathrm{t}}=\frac{220}{\sqrt{3}} \mathrm{~V}$ (Phase)
$Z=(0.25+j 2.5) \Omega$
$I=10 \angle-36.86 A$
$E_{g}=\frac{220}{\sqrt{3}}-(0.25+j 2.5) \times 10 \angle-36.86$
$\mathrm{E}_{\mathrm{g}}=141.658 \angle-8.7 \mathrm{~V}$ (phase)
$\mathrm{E}_{\mathrm{g}}=245.36 \mathrm{~V}$ (line)

Q29. The closed loop line integral

$$
\oint_{|z|=5} \frac{z^{3}+z^{2}+8}{z+2} d z
$$

Evaluated counter-clockwise, is
A. $+4 \mathrm{j} \pi$
B. $-4 \mathrm{j} \pi$
C. $+8 \mathrm{j} \pi$
D. $-8 \mathrm{j} \pi$

Ans C
Sol -
$\oint_{|z|=5} \frac{z^{3}+z^{2}+8}{z+2} d z=2 \pi j$ (sum of residues)
$=2 \pi j \times\left[\lim _{z \rightarrow 2}(z+2) \frac{\left(z^{3}+z^{2}+8\right.}{z+2}\right]$
$=2 \pi \mathrm{j}\left[\frac{-8+4+8}{1}\right]=8 \pi \mathrm{j}$
Q30. The voltage across and the current through a load are expressed as follows

$$
\begin{aligned}
& v(t)=-170 \sin \left(377 t-\frac{\pi}{6}\right) V \\
& i(t)=8 \cos \left(377 t+\frac{\pi}{6}\right) A
\end{aligned}
$$

The average power in watts (round off to one decimal place) consumed by the load is
Ans 588.89
Sol -
$\mathrm{V}(\mathrm{t})=-170 \sin \left(377 \mathrm{t}-\frac{\pi}{6}\right)$
$I(t)=8 \cos \left(377 t+\frac{\pi}{6}\right)$

$V(t)=-170 \sin \left(377 t-\frac{\pi}{6}\right)$
$\mathrm{V}(\mathrm{t})=170 \cos \left(377 \mathrm{t}-\frac{\pi}{6}+\frac{\pi}{2}\right)$
$\mathrm{V}(\mathrm{t})=170 \cos \left(377 \mathrm{t}+\frac{\pi}{3}\right)$
$\mathrm{P}=\mathrm{V}_{\text {rms }} \mathrm{I}_{\text {rms }} \cos \varphi$
$\mathrm{P}=\frac{170}{\sqrt{2}} \frac{8}{\sqrt{2}} \cos 30$
$\mathrm{P}=588.89$ watts
Q31. A delta-connected, $3.7 \mathrm{~kW}, 400 \mathrm{~V}$ (line), three-phase, $4-$ pole, $50-\mathrm{Hz}$ squirrel-cage induction motor has the following equivalent circuit parameters per phase referred to the stator: $R_{1}=5.39 \Omega, R_{2}=5.72 \Omega, X_{1}=X_{2}=8.22 \Omega$. Neglect shunt branch in the equivalent circuit. The starting line current in amperes (round off to two decimal places) when it is connected to a 100 V (line), 10 Hz , three-phase AC source is \qquad .
Ans 14.95
Sol -
Given $\mathrm{R}_{1}=5.39 \Omega, \mathrm{R}_{2}=5.72 \Omega, \mathrm{X}_{1}=\mathrm{X}_{2}=8.22 \Omega$
for frequency $\rightarrow 10 \mathrm{~Hz}$
$\mathrm{X}_{1}=\mathrm{X}_{2}=8.22 \times \frac{10}{50}=1.644 \Omega$
Starting phase current at 10 Hz
$I_{p n}=\frac{V_{p n}}{\sqrt{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)^{2}+\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)^{2}}}$
$=\frac{100}{\sqrt{(5.39+5.72)^{2}(1.644+1.644)^{2}}}$
$\mathrm{I}_{\mathrm{Pn}}=8.63 \mathrm{~A}$
Starting line current $=\mathrm{I}_{\mathrm{L}}=\sqrt{3} \mathrm{I}_{\mathrm{Ph}}$
$\mathrm{I}_{\mathrm{L}}=\sqrt{3} \times 8.63$
$\mathrm{I}_{\mathrm{L}}=14.95 \mathrm{~A}$
Q32. In a 132 kV system, the series inductance up to the point of circuit breaker location is 50 mH . The shunt capacitance at the circuit breaker terminal is $0.05 \mu \mathrm{~F}$. The critical value of resistance in ohms required to be connected across the circuit breaker contacts which will give no transient oscillation is \qquad .
Ans 500
Sol -
Given data $\mathrm{L}=50 \mathrm{mH}, \mathrm{C}=0.05 \mu \mathrm{~F}$
Critical resistance to avoid current shopping will be given as
$\mathrm{R}=\frac{1}{2} \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}}=\frac{1}{2} \sqrt{\frac{50 \times 10^{-3}}{0.05 \times 10^{-6}}}$
$R=500 \Omega$

Q33. In the single machine infinite bus system shown below, the generator is delivering the real power of 0.8 p.u. at 0.8 power factor lagging to the infinite bus. The power angle of the generator in degrees (round off to one decimal place) is \qquad .

Ans 20.51
Sol -
$X_{\text {eq }}=0.25+0.2+\frac{0.4}{2}$
$X_{\text {eq }}=0.65 \mathrm{PU}$
$\mathrm{P}=\mathrm{V}_{\mathrm{PU}} \operatorname{IpV} \cos \varphi$
$0.8=1 \times \operatorname{Ipv} \times 0.8$
Ipu $=1 \mathrm{PU}$
$\overrightarrow{\mathrm{I}}=1 \angle-36.86$
[as 0.8 pf lagging]
$\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{V}}+\mathrm{j} \overrightarrow{\mathrm{I}} \mathrm{X}_{\mathrm{eq}}$
$\overrightarrow{\mathrm{E}}=1+1 \angle-36.86 \times \mathrm{j} 0.65=1.484 \angle 20.51 \mathrm{Pu}$
$\delta=20.51$ degrees
Q34. In the circuit below, the operational amplifier is ideal. If $\mathrm{V}_{1}=10 \mathrm{mV}$ and $\mathrm{V}_{2}=50 \mathrm{mV}$, the output voltage ($\mathrm{V}_{\text {out }}$) is

A. 600 mV
B. 500 mV
C. 400 mV
D. 100 mV

Ans C
Sol -

$\mathrm{Vx}=\mathrm{V} 2 \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad$ [Voltage division Rule]
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{x}}\left[1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right]-\mathrm{V}_{1} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
$\mathrm{V}_{\text {out }}=\mathrm{V}_{2} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\left[1+\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{1}}\right]-\mathrm{V}_{1} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
$\mathrm{V}_{\text {out }}=\mathrm{V}_{2} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\left[1+\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{1}}\right]-\mathrm{V}_{1} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
$\mathrm{V}_{\text {out }}=\mathrm{V}_{2} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}-\mathrm{V}_{1} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$
$\mathrm{V}_{\text {out }}=\frac{100}{10}(50-10)$
$\mathrm{V}_{\text {out }}=400 \mathrm{mV}$

Q35. In the circuit shown below, X and Y are digital inputs, and Z is a digital output. The equivalent circuit is a

A. XOR gate
B. NAND gate
C. XNOR gate
D. NOR gate

Ans A

Sol -

Output $=\overline{\mathrm{X}} \mathrm{Y}+\mathrm{X} \overline{\mathrm{Y}}$
$=\mathrm{X} \oplus \mathrm{Y}$
The above expression is for XOR gate

Q36. A $0.1 \mu \mathrm{~F}$ capacitor charged to 100 V is discharged through a $1 \mathrm{~K} \Omega$ resistor. The time in msec (round off to two decimal places) required for the voltage across the capacitor to drop to 1 V is \qquad -.

Ans 0.46
Sol -
Discharging of capacitor equation
$V_{c}(t)=V_{o} e^{-t / T}$
Where $\mathrm{T}=\mathrm{RC}=\left(10^{3}\right)\left(10^{-7}\right)=10^{-4} \mathrm{sec}$
$\mathrm{V}_{\mathrm{o}}=100 \mathrm{~V}$
$V_{c}(t)=100 e^{-104 t}$
$\mathrm{V}_{\mathrm{c}}(\mathrm{t})=1 \mathrm{~V}$
$1=100 \mathrm{e}^{-104 \mathrm{t}}$
$\mathrm{T}=0.46 \mathrm{msec}$
Q37. A periodic function $f(t)$, with a period of 2π, is represented as its Fourier series, $f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n t+\sum_{n=1}^{\infty} b_{n} \sin n t$.
If

$$
\mathrm{f}(\mathrm{t})=\left\{\begin{array}{cc}
\mathrm{A} \sin \mathrm{t}, & 0 \leq \mathrm{t} \leq \pi \\
0 & \pi<\mathrm{t}<2 \pi
\end{array}\right.
$$

The Fourier series coefficients a_{1} and b_{1} of $f(t)$ are
A. $a_{1}=0 ; b_{1}=A / \square$
B. $\mathrm{a}_{1}=0 ; \mathrm{b}_{1}=\frac{\mathrm{A}}{2}$
C. $\mathrm{a}_{1}=\frac{\mathrm{A}}{\pi} ; \mathrm{b}_{1}=0$
D. $\mathrm{a}_{1}=\frac{\mathrm{A}}{2} ; \mathrm{b}_{1}=0$

Ans B
Sol -
$\mathrm{a}_{\mathrm{n}}=\frac{2}{\mathrm{~T}} \int_{\mathrm{o}}^{\mathrm{T}} \mathrm{x}(\mathrm{t}) \cos \mathrm{n} \omega \mathrm{t} d(\omega \mathrm{t})$
$\left.\mathrm{a}_{1}\right|_{\substack{\omega=1 \\ \mathrm{~T}=2 \pi}}=\frac{2 \mathrm{x}}{2 \mathrm{x}} \int_{0}^{2 \mathrm{x}} \mathrm{A} \sin \mathrm{t} \cos \mathrm{tdt}$
$=\frac{\mathrm{A}}{\pi} \int_{0}^{\pi} \sin t \cos t \mathrm{t} t$
$\mathrm{a}_{1}=\frac{\mathrm{A}}{\pi} \int_{\mathrm{o}}^{\pi} \frac{\sin 2 \mathrm{t}}{2}=\frac{\mathrm{A}}{2 \pi}\left[\frac{-\cos 2 \mathrm{t}}{2}\right]_{0}^{\pi}$
$\mathrm{a}_{1}=\mathrm{o}$
$\mathrm{b}_{\mathrm{n}}=\frac{2}{\mathrm{~T}} \int_{\mathrm{o}}^{\mathrm{T}} \mathrm{x}(\mathrm{t}) \sin \mathrm{n} \omega \mathrm{t} \mathrm{d}(\omega \mathrm{t})$
$b_{1}=\frac{2}{2 \pi} \int_{0}^{\pi} A \sin t \sin t d t$
$\mathrm{b}_{1}=\frac{\mathrm{A}}{\pi} \int_{\mathrm{o}}^{\pi} \sin ^{2} \mathrm{t} d \mathrm{dt}$
$\mathrm{b}_{1}=\frac{\mathrm{A}}{\pi} \int_{\mathrm{o}}^{\pi}\left(\frac{1}{2}-\frac{\cos 2 \mathrm{t}}{2}\right) \mathrm{dt}$
$\mathrm{b}_{1}=\frac{\mathrm{A}}{2}$
Q38. If $A=2 x \mathbf{i}+3 y \mathbf{j}+4 z \mathbf{k}$ and $u=x^{2}+y^{2}+z^{2}$, then $\operatorname{div}(u \mathbf{A})$ at $(1,1,1)$ is \qquad .
Ans 45
Sol -
$A=2 x \hat{i}+3 y \hat{j}+4 z \hat{k}, \quad U=x^{2}+y^{2}+z^{2}$
$U A=\left(2 x^{3}+2 x y^{2}+2 x z^{2}\right) \hat{i}+\left(3 x^{2} y+3 y^{3}+3 y z^{2}\right) \hat{j}$
$+\left(4 x^{2} z+4 y^{2} z+4 z^{3}\right) \hat{k}$
$\operatorname{div}(U A)=\frac{d}{d x}\left(2 x^{3}+2 x y^{2}+2 x z^{2}\right)+\frac{d}{d 4}\left(3 x^{2} y+3 y^{3}+3 y z^{2}\right)$
$+\frac{d}{d z}\left(4 x^{2} z+4 y^{2} z+4 z^{3}\right)$
$\operatorname{div}(U A)=\left(6 x^{2}+2 y^{2}+2 z^{2}\right)+\left(3 x^{2}+9 y^{2}+3 z^{2}\right)+\left(4 x^{2}+4 y^{2}+12 z^{2}\right)$
at $(1,1,1) \Rightarrow x=1, y=1, z=1$
$\operatorname{div}(U A)=45$
Q39. A moving coil instrument having a resistance of 10Ω, gives a full-scale deflection when the current is 10 mA . What should be the value of the series resistance, so that it can be used as a voltmeter for measuring potential difference up to 100 V ?
A. 9990Ω
B. 990Ω
C. 99Ω
D. 9Ω

Ans A

Sol-
PMMC Instrument
$\mathrm{I}_{\mathrm{fs}}=10 \mathrm{~mA}$
$R_{m}=10 \Omega$


```
100 = Ifs (Rm + Rse)
100 = 10 < 10-3 (10 + R Rc)
R
```

Q40. Consider a state-variable model of a system

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{\mathrm{x}}_{1} \\
\dot{\mathrm{x}}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\alpha & -2 \beta
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\alpha
\end{array}\right] \mathrm{r}} \\
& \mathrm{y}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]
\end{aligned}
$$

Where y is the output, and r is the input. The damping ratio ξ and the Undamped natural frequency $\omega_{\mathrm{n}}(\mathrm{rad} / \mathrm{sec})$ of the system are given by
A. $\xi=\sqrt{\beta} ; \omega_{\mathrm{n}}=\sqrt{\alpha}$
B. $\xi=\sqrt{\alpha} ; \omega_{\mathrm{n}}=\frac{\beta}{\sqrt{\alpha}}$
C. $\xi=\frac{\sqrt{\alpha}}{\beta} ; \omega_{\mathrm{n}}=\sqrt{\beta}$
D. $\xi=\frac{\beta}{\sqrt{\alpha}} ; \omega_{\mathrm{n}}=\sqrt{\alpha}$

Ans D
Sol -
We know
$\dot{\mathrm{X}}=\mathrm{AX}+\mathrm{Bu}$
$\mathrm{Y}=\mathrm{CX}+\mathrm{Du}$
Comparing the above equation with the given problem
$\mathrm{A}=\left[\begin{array}{cc}0 & 1 \\ -\alpha & -2 \beta\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}0 \\ \alpha\end{array}\right]$
$\mathrm{C}=(1$
0)

Characteristic equation is
$|S I-A|=0$
$\left|\left[\begin{array}{ll}\mathrm{S} & 0 \\ 0 & \mathrm{~S}\end{array}\right]-\left[\begin{array}{cc}0 & 1 \\ -\alpha & -2 \beta\end{array}\right]\right|=0$
$\left|\begin{array}{cc}\mathrm{S} & -1 \\ \alpha & \mathrm{~S}+2 \beta\end{array}\right|=$
$s^{2}+2 \mathrm{~S} \beta+\mathrm{a}=0$
$s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0$
Comparing (1) and (2)
$\omega_{n}{ }^{2}=a$
$\omega_{\mathrm{n}}=\sqrt{\alpha}$
$2 \xi \omega_{n}=2 \beta$
$\xi=\frac{\beta}{\omega_{\mathrm{n}}}=\frac{\beta}{\sqrt{\alpha}}$

Q41. The enhancement type MOSFET in the circuit below operates according to the square law. $\mu_{\mathrm{n}} \mathrm{Cox}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$, the threshold voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$ is 500 mV . Ignore channel length modulation. The output voltage $\mathrm{V}_{\text {out }}$ is

A. 600 mV
B. 500 mV
C. 2 V
D. 100 mV

Ans A
Sol -
$\mathrm{I}_{\mathrm{D}}=\frac{1}{2}\left(\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\right)\left(\frac{\mathrm{w}}{\mathrm{L}}\right)\left(\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{t}}\right)^{2}$
$5 \times 10^{-6}=\frac{1}{2}\left(100 \times 10^{-6}\right) \times(10) \times\left(\mathrm{V}_{\text {out }}-0.5\right)^{2}$
$\left(\mathrm{V}_{\text {out }}-0.5\right)^{2}=0.01$
$\mathrm{V}_{\text {out }}=0.6 \mathrm{~V}=600 \mathrm{mV}$
Q42. The asymptotic Bode magnitude plot of a minimum phase transfer function $\mathrm{G}(\mathrm{s})$ is shown below.

Consider the following two statements.
Statement I: Transfer function G(s) has three poles and one zero.
Statement II: At very high frequency $(\omega \rightarrow \infty)$, the phase angle $\angle \mathrm{G}(\mathrm{j} \omega)=-\frac{3 \pi}{2}$.
Which one of the following options is correct?
A. Both the statements are true.
B. Both the statements are false.
C. Statement I is false and statement II is true.
D. Statement I is true and statement II is false.

Ans C

Sol -
From the given Bode plot,
$T(S)=$ Transfer function $=\frac{K}{S\left(1+\frac{\mathrm{S}}{1}\right)\left(1+\frac{\mathrm{s}}{20}\right)}$
It has three poles and no zero
So, statement 1 is false
$\angle \mathrm{T}(\mathrm{s})=-90-\tan ^{-1} \mathrm{w}-\tan ^{-1} \frac{\mathrm{w}}{20}$
$\angle T(j w) \mid w \rightarrow \infty=-270^{\circ}$
So, statement 2 is true
Q43. A single-phase transformer of rating 25 kVA , supplies a 12 kW load at power factor of 0.6 lagging. The additional load at unity power factor in kW (round off to two decimal places) that may be added before this transformer exceeds its rated kVA is \qquad _.
Ans 7.20
Sol -
Load supplied previously before adding extra load
12 KW at pf of 0.6
$S_{\text {Load }}=12+j 16$
Now, Let P be extra load added (Qextra $=$ as unity p.f)
$S_{\text {Load }}=12+P+j 16$
$\left|S_{\text {Load }}\right|=\sqrt{(12+P)^{2}+16^{2}}$
Rated KVA $\left|S_{\text {rated }}\right|=25$
$25=\sqrt{(12+\mathrm{P})^{2}+16^{2}}$
$25^{2}=(12+\mathrm{P})^{2}+16^{2}$
$\mathrm{P}=7.5,-31.2$
So, 7.20 KW is extra load which is added
Q44. Consider a 2×2 matrix $M=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$, where. v_{1} and v_{2} are the column vectors. Suppose $\mathrm{M}^{-1}=\left[\begin{array}{l}\mathrm{u}_{1}^{\mathrm{T}} \\ \mathrm{u}_{2}^{\mathrm{T}}\end{array}\right]$, where $\mathrm{u}_{1}^{\mathrm{T}}$ and $\mathrm{u}_{2}^{\mathrm{T}}$ are the row vectors. Consider the following statements:

Statement 1: $u_{1}^{\mathrm{T}} \mathrm{v}_{1}=1$ and $\mathrm{u}_{2}^{\mathrm{T}} \mathrm{v}_{2}=1$
Statement 2: $u_{1}^{\mathrm{T}} \mathrm{v}_{1}=0$ and $\mathrm{u}_{2}^{\mathrm{T}} \mathrm{v}_{1}=0$
Which of the following options is correct?
A. Both the statements are false
B. Statement 2 is true and statement 1 is false
C. Statement 1 is true and statement 2 is false
D. Both the statements are true

Ans D

Sol -
$M^{-1} M=I$
$\left[\begin{array}{l}\mathrm{U}_{1}^{\mathrm{T}} \\ \mathrm{U}_{2}^{\mathrm{T}}\end{array}\right]\left[\begin{array}{ll}\mathrm{V}_{1} & \mathrm{~V}_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{cc}\mathrm{U}_{1} \mathrm{~T}_{\mathrm{V} 1} & \mathrm{U}_{1} \mathrm{~T}_{\mathrm{V} 2} \\ \mathrm{U}_{2} \mathrm{~T}_{\mathrm{V} 1} & \mathrm{U}_{2} \mathrm{~T}_{\mathrm{V} 2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\mathrm{U}_{1}^{\mathrm{T}} \mathrm{V}_{1}=1 \quad \mathrm{U}_{1}^{\mathrm{T}} \mathrm{V}_{2}=0$
$\mathrm{U}_{2}^{\mathrm{T}} \mathrm{V}_{1}=0 \quad \mathrm{U}_{2}^{\mathrm{T}} \mathrm{V}_{2}=1$
Statement 1 and 2 are both correct
Q45. A single-phase fully-controlled thyristor converter is used to obtain an average voltage of 180 V with 10 A constant current to feed a DC load. It is fed from single-phase AC supply of $230 \mathrm{~V}, 50 \mathrm{~Hz}$. Neglect the source impedance. The power factor (round off to two decimal places) of $A C$ mains is \qquad -.
Ans 0.78
Sol -
$\mathrm{V}_{\text {sr }} \mathrm{I}_{\text {sr }} \cos \varphi=\mathrm{V}_{o} \mathrm{I}_{\mathrm{o}}$
For single phase fully - controlled converter
$\mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{sr}}=10 \mathrm{~A}$
$\cos \phi=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{sr}}}=\frac{180}{230}=0.78$
Q46. A DC-DC buck converter operates in continuous conduction mode. It has 48 V input voltage, and it feeds a resistive load of 24Ω. The switching frequency of the converter is 250 Hz . If switch-on duration is 1 msec , the load power is
A. 12 W
B. 6 W
C. 24 W
D. 48 W

Ans B
Sol -
Given that
Switch frequency, $f_{s}=250 \mathrm{~Hz}$
Load resistance $R_{L}=24 \Omega$
Supply voltage $\mathrm{V}_{\mathrm{s}}=48 \mathrm{~V}$
Ton $=1 \mathrm{msec}$
$\mathrm{T}=\frac{1}{\mathrm{f}_{\mathrm{s}}}=4 \mathrm{~ms}$
$\alpha=\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{T}}=0.25$
Load power $=\frac{\mathrm{V}_{\mathrm{o}}^{2}}{\mathrm{R}}=\frac{\left(\alpha \mathrm{V}_{\mathrm{S}}\right)^{2}}{\mathrm{R}}=\frac{(0.25 \times 48)^{2}}{24}$
$P=6$ watts

Q47. In a DC-DC boost converter, the duty ratio is controlled to regulate the output voltage at 48 V . The input DC voltage is 24 V . The output power is 120 W . The switching frequency is 50 kHz . Assume ideal components and a very large output filter capacitor. The converter operates at the boundary between continuous and discontinuous conduction modes. The value of the boost inductor (in $\mu \mathrm{H}$) is \qquad .
Ans 24
Sol -
$\mathrm{P}_{\mathrm{o}}=120 \mathrm{w}, \mathrm{Vs}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=48 \mathrm{~V}$
$\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{V}_{\mathrm{s}}}{1-\alpha}$
$1-\alpha=\frac{24}{48}$
$\mathrm{a}=0.5$ [Duty cycle]
$\mathrm{P}_{\mathrm{o}}=\mathrm{V}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}=120$
$\mathrm{I}_{\mathrm{o}}=\frac{120}{48}=2.54 \mathrm{~A}$
$\mathrm{V}_{\mathrm{s}} \mathrm{Is}=\mathrm{V}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}$
$\mathrm{I}_{\mathrm{S}}=\frac{120}{24}=5 \mathrm{~A}$
At boundary of continuous \& discontinuous
$\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{S}}=\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}$
$\Delta \mathrm{I}_{\mathrm{L}}=\frac{\alpha \mathrm{V}_{\mathrm{S}}}{\mathrm{f}^{\mathrm{Lc}}}=2 \times 5$
$\mathrm{L}_{\mathrm{C}}=\frac{0.5 \times 24}{50 \times 10^{3} \times 10}=24 \mu \mathrm{H}$
Q48. A 220 V DC shunt motor takes 3 A at no-load. It draws 25 A when running at full-load at 1500 rpm . The armature and shunt resistances are 0.5Ω and 220Ω, respectively. The noload speed in rpm (round off to two decimal places) is \qquad _.
Ans 1579.33
Sol -

No load
$\mathrm{I}_{\mathrm{NL}}=3 \mathrm{~A}$
$\mathrm{I}_{\mathrm{C}}=\frac{220}{\mathrm{Rf}}=\frac{220}{220}=1 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{L}}-\mathrm{If}_{\mathrm{f}}=2 \mathrm{~A}$
Back cmf $=E b_{N}=V-I_{a} R_{a}$
$=220-2 \times 0.5=219 \mathrm{~V}$
Full load
$\mathrm{I}_{\mathrm{FL}}=25 \mathrm{~A} \quad \mathrm{~N}_{\mathrm{f}}=1500 \mathrm{rpm}$
$\mathrm{If}_{\mathrm{f}}=1 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{FL}}-\mathrm{If}_{\mathrm{f}}=24 \mathrm{~A}$
$\mathrm{EbF}=\mathrm{V}-\mathrm{I}_{\mathrm{a}} \mathrm{Ra}_{\mathrm{a}}=220-24 \times 0.5=208 \mathrm{~V}$
We know E a speed (N)
$\frac{\mathrm{E}_{\mathrm{bF}}}{\mathrm{E}_{\mathrm{bN}}}=\frac{\mathrm{N}_{\mathrm{f}}}{\mathrm{N}_{\mathrm{N}}}$
($\mathrm{N}_{\mathrm{N}}=$ speed at no load $)$
$\frac{208}{219}=\frac{1500}{\mathrm{~N}_{\mathrm{N}}}$
$\mathrm{N}_{\mathrm{N}}=1579.33 \mathrm{rpm}$
Q49. A fully-controlled three-phase bridge converter is working from a $415 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ supply. It is supplying constant current of 100 A at 400 V to a DC load. Assume large inductive smoothing and neglect overlap. The rms value of the AC line current in amperes (round off to two decimal places) is \qquad .
Ans 81.65
Sol -
Ac line current $\mathrm{rms}=\left(\mathrm{I}_{\mathrm{s}}\right)_{\mathrm{rms}}=\mathrm{I}_{\mathrm{o}} \sqrt{\frac{2}{3}}=100 \sqrt{\frac{2}{3}}=81.65 \mathrm{~A}$
Q50. The output expression for the Karnaugh map shown below is

>PQ				
RS	00	01	11	10
00	0	1	1	0
01	1	1	1	1
11	1	1	1	1
10	0	0	0	0

A. $Q R+S$
B. $\mathrm{QR}+\overline{\mathrm{S}}$
C. $Q \overline{\mathrm{R}}+\overline{\mathrm{S}}$
D. $Q \bar{R}+S$

Ans D
Sol -

$F(P, Q, R, S)=S+Q \bar{R}$

Q51. The probability of a resistor being defective is 0.02 . There are 50 such resistors in a circuit. The probability of two or more defective resistors in the circuit (round off to two decimal places) is \qquad .
Ans 0.26
Sol -
$P=0.02$
$\mathrm{n}=50$
$\lambda=n p=50(0.02)=1$
$P(x \geq 2)=1-P(x<2)$
$=1-[P(x=0)+P(x=1)]$
$=1-\left[\frac{\mathrm{e}^{-\lambda} \lambda^{0}}{01}+\frac{\mathrm{e}^{-\lambda} \lambda^{1}}{11}\right]=1-\mathrm{e}^{-\lambda}(1+)$
$P(x \geq 2)=1-e^{-1}(1+1)=0.26$
Q52. The magnetic circuit shown below has uniform cross-sectional area and air gap of 0.2 cm . The mean path length of the core is 40 cm . Assume that leakage and fringing fluxes are negligible. When the core relative permeability is assumed to be infinite, the magnetic flux density computed in the air gap is 1 tesla. With same Ampere-turns, if the core relative permeability is assumed to be 1000 (linear), the flux density in tesla (round off to three decimal places) calculated in the air gap is \qquad .

Ans 0.834
Sol-
Lair $=0.2 \mathrm{~cm}$
$\mathrm{L}_{\mathrm{m}}=40 \mathrm{~cm}$
Given $\mathrm{B}_{\mathrm{o}}=1$ Tesla at $\mu_{\mathrm{r}} \rightarrow \infty$
$\mathrm{L}_{\text {core }}=40-0.2=39.8 \mathrm{~cm}$
Let a = uniform cross - sectional area
We know that

$$
\phi=\text { flux }=\frac{\mathrm{MMF}}{\text { Total Reluc tance }}=\frac{\mathrm{NI}}{\mathrm{~S}}
$$

$$
\begin{aligned}
& \mathrm{S}_{T}=\mathrm{S}_{\text {airgap }}+\mathrm{S}_{\text {core }} \\
& =\frac{\mathrm{L}_{\text {air }}}{\mu_{\mathrm{o}}(1) \mathrm{A}}+\frac{\mathrm{L}_{\text {core }}}{\mu_{\mathrm{o}} \mu_{\mathrm{r}} \mathrm{~A}}
\end{aligned}
$$

$$
\mathrm{S}=\frac{1}{\mu_{\mathrm{o}} \mathrm{~A}}\left[\mathrm{~L}_{\text {air }}+\frac{\mathrm{L}_{\text {core }}}{\mu_{\mathrm{r}}}\right]
$$

Case 1: when $\mu_{\mathrm{r}} \rightarrow \infty, \mathrm{B}=1 \mathrm{~T}$

MMF $=\mathrm{NI}_{1}=\mathrm{B}_{1} \mathrm{~A}\left[\mathrm{~L}_{\text {air }}+\frac{\mathrm{L}_{\text {core }}}{\mu_{\mathrm{r}}} \rightarrow \infty\right] \frac{1}{\mu_{\mathrm{o}} \mathrm{A}}$
$\mathrm{NI}_{1}=1$ (a) $\left[l_{\text {air }}\right] \times \frac{1}{\mu_{0} \mathrm{~A}}=\frac{\mathrm{L}_{\text {air }}}{\mu_{\mathrm{o}}}$
$\mathrm{NI}_{1}=\frac{1_{\text {air }}}{\mu_{\mathrm{o}}}$
Case 2:
$M_{r}=1000$
MMF = Same
$\mathrm{NI}_{1}=\mathrm{B}_{2} \mathrm{~A}\left[\mathrm{~L}_{\text {air }}+\frac{\mathrm{L}_{\text {core }}}{\mu_{\mathrm{r}}}\right] \frac{1}{\mu_{\mathrm{o}} \mathrm{A}}$
Put NI_{1} from (1)
$\frac{\mathrm{L}_{\text {air }}}{\mu_{\mathrm{o}}}=\mathrm{B}_{2} \frac{1}{\mu_{\mathrm{o}}}\left[\mathrm{L}_{\text {air }}+\frac{\mathrm{L}_{\text {core }}}{1000}\right]$
$0.2=\mathrm{B}_{2}\left[0.2+\frac{39.8}{1000}\right]$
$\mathrm{B}_{\mathrm{L}}=0.834$ Tesla
Q53. A $30 \mathrm{kV}, 50 \mathrm{~Hz}, 50 \mathrm{MVA}$ generator has the positive, negative, and zero sequence reactance's of 0.25 p.u., 0.15 p.u., and 0.05 p.u., respectively. The neutral of the generator is grounded with a reactance so that the fault current for a bolted LG fault and that of a bolted three-phase fault at the generator terminal are equal. The value of grounding reactance in ohms (round off to one decimal place) is \qquad .

Ans 1.8
Sol-
Fault current for SLG fault
$\mathrm{I}_{\mathrm{FIG}}=\frac{3 \mathrm{~V}}{\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{0}+3 \mathrm{Xn}}$
Fault current for 3φ fault
$\mathrm{I}_{\mathrm{f} 3 \phi}=\frac{\mathrm{V}}{\mathrm{X}_{1}}$
$\frac{3 V}{\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{0}+3 \mathrm{X}}=\frac{\mathrm{V}}{\mathrm{X}_{1}}$
$\mathrm{Xn}=\frac{2 \times_{1}-\mathrm{X}_{0}-\mathrm{X}_{2}}{3}$
$X_{\mathrm{n}}=\frac{2(0.25)-0.05-0.15}{3}$
$\mathrm{X}_{\mathrm{n}}=0.1 \mathrm{Pu}$
$\mathrm{X}_{\mathrm{n}}(\mathrm{in} \Omega)=0.1 \times \frac{30^{2}}{50} \quad\left[\mathrm{Zpu}=\frac{\mathrm{Z}_{\text {bass }} \times \mathrm{MVA}}{\mathrm{KVL}}\right]$
$\underline{X_{n}(i n \Omega)}=1.8 \Omega$

Q54. The line currents of a three-phase four wire system are square waves with amplitude of 100 A. These three currents are phase shifted by 120° with respect to each other. The rms value of neutral current is
A. 0 A
B. 300 A
C. 100 A
D. $\frac{100}{\sqrt{3}} \mathrm{~A}$

Ans C
Sol-

$\mathrm{I}_{\mathrm{N}}=\mathrm{I}_{\mathrm{a}}+\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{c}}$
$\left(\mathrm{I}_{\mathrm{N}}\right)_{\text {rms }}=100 \mathrm{~A}$
Q55. The transfer function of a phase lead compensator is given by

$$
D(s)=\frac{3\left(s+\frac{1}{3 T}\right)}{\left(s+\frac{1}{T}\right)}
$$

The frequency (in rad/sec), at which $\angle \mathrm{D}(\mathrm{j} \omega$) is maximum, is
A. $\sqrt{3 \mathrm{~T}}$
B. $\sqrt{3 \mathrm{~T}^{2}}$
C. $\sqrt{\frac{1}{3 \mathrm{~T}^{2}}}$
D. $\sqrt{\frac{1}{\mathrm{~T}^{2}}}$

Ans C

Sol-
$\mathrm{T}(\mathrm{s})=\frac{1+3 \mathrm{TS}}{1+\mathrm{TS}}$
Frequency at which $\angle T$ (jw) is maximum
$\mathrm{W}_{\mathrm{m}}=\frac{1}{\mathrm{~T} \sqrt{\alpha}}$
$\mathrm{T}(\mathrm{S})=\frac{1+\alpha \mathrm{TS}}{1+\mathrm{TS}}$ is The general phase lead compensator
$\therefore \mathrm{a}=3$
$\mathrm{w}_{\mathrm{m}}=\frac{1}{\mathrm{~T} \sqrt{3}}=\frac{1}{\sqrt{3 \mathrm{~T}^{2}}}$

ALL THE BEST FOR YOUR RESULTS

India's \#1 Online Preparations App for GATE, ESE, State Engg. Exams, PSU's \& JE Exams

> Latest Job and Exam Notifications
》 Get Queries Resolved by Experts \& Gradians
> Practice 5000+ Topic wise Questions \& earn Coins
, All India Test Series with Latest Pattern
, Exam Oriented Online Classroom Platform

